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EFFECTIVE MODULI OF MULTIPHASE MATRIX COMPOSITES 

P. G. Krzhechkovskii UDC 5 3 9 . 3 : 6 7 8 . 0 6 7  

An extensive literature [1-3] addresses the question of calculating the effective char- 
acteristics of granulated matrix composites. However, these studies are generally concerned 
with two-phase composites, i.e., composites consisting of a matrix with inclusions having 
the same physical and geometric characteristics. The polydisperse model proposed by Hashin 
[4] has several important deficiencies which make it unsuitable for the design of actual com- 
posites: first of all, it is invalid for multiphase mixtures whose fractions differ in den- 
sity; second, it does not account for the geometry of the filler and the associated arrange- 
ment of the filler material in the matrix. 

In the present study, we construct a theory to calculate the effective moduli of partic- 
ulate matrix composites which is free of these problems. Our theory is in turn based on the 
theory of composite media proposed by Hill [5] and a generalized singular approximation of 
Shermergor's theory of random functions [i]. As an example of the use of the results obtained 
here, we examine the determination of the elastic moduli of polymer composites consisting of 
a polymer matrix and whole spherical inclusions introduced into the matrix. 

We will study a medium consisting of a homogeneous, isotropic matrix and spherical or 
ellipsoidal particles introduced into the matrix. The introduced particles are randomly lo- 
cated and oriented in the matrix. It is assumed that the filler consists of n - 1 isotropic 
phases differing in density and elastic characteristics and - in the case of spheres - in 
external diameter. Given the volume content of inclusions in the composite v s, it is as- 
sumed that we know the histogram describing the distribution of the phases with respect to 

�9 (i) their volume content in the filler v s . The latter quantity is determined by the vector 
function 

p = p (p~, p~ . . . . .  > - J ;  E p~ = ~ ( 1 )  
{ = l  

s o  t h a t  V s ( i )  = P i V s  - 

I f  t h e  c o m p o n e n t s  o f  t h e  f i l l e r  d i f f e r  i n  d e n s i t y ,  t h e n  t h e  b e l o w  v e c t o r - f u n c t i o n  d e -  
scribing the distribution of the densities of the phases is assigned 

P, = P, (9~ 1), 9~ 2) . . . . .  9~n-1))- ( 2 )  

I n  t h e  c a s e  when t h e  f i l l e r  i s  s p h e r i c a l ,  we s h o u l d  a l s o  know t h e  h i s t o g r a m  d e s c r i b i n g  t h e  
distribution of the fractions with respect to external diameter 

d = d(d~, d2, . . . ,  d,,_~). ( 3 )  

Equations (1)-(3) describe the structure and geometry of the filler of a particulate matrix 
composite. 

In accordance with the generalized singular approximation [i], the tensor of the effec- 
tive moduli of a multiphase nonmatrix mixture is found from one of the equivalent expressions 
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(L,+Lo)-I =~'(O(L~i)+L0)-1;v~ ~.O)v, --i (4)  
i = l  i = l  

or 

= - - 1 )  - 1  

\ i =  i 

where L 0 is an isotropic tensor dependent on the elastic moduli of the reference body (Hill 
tensor [5]). For matrix composites, its properties are determined by the elastic character- 
istics of the matrix (L 0 = L0 (m) in the sense of equality of the volumetric and deviatoric 
components of the tensors). 

We multiply the left and right sides of (4) by the isotropic tensor (L m + L0(m)) -I (L m 
is the tensor of the elastic moduli of the matrix). We thus obtain 

- . ,  , )  , ( 5 )  

where I is a unit tensor of rank four; as(i) = (L0 (m) + Lm) • (Ls (i) + L0(m)) -I is the tensor 
coefficient of strain concentration for a single inclusion of the i-th fraction in an infinite 

matrix; Ls(i) is the tensor of the elastic moduli of the i-th phase of the filler. Here and 
below, by the product of tensors we mean their convolution with regard to the internal in- 
dices. 

If we now introduce the tensor coefficient for the stress concentration on a single in- 
clusion in an infinite matrix 8s (i), connected with as(i) by the relation [6] ~s (i) = 

Ls(i)as(i)Lm -I, then we can reduce (5) to the form 

v(i) (i) n-1. (i)o~(~)'~--t 
i = l  i:l 

Equations (5) and (6) give the solution to the problem of determining the effective elastic 
moduli of a multiphase matrix composite without allowance for the geometry of the phases. 

The below equalities follow from the theory of composites developed by Hill [5] 

L, ~ . o)~(i)~(o A0)v(i) I ( 7 ) 
i = l  i = l  

where As (i) is the strain-concentration tensor for an inclusion of the i-th fraction in the 
composite. Assuming that one of the phases has the properties of the matrix and allowing 
for the second relation in (7), we write 

n--1 

L, = L,~ + E v~ ~) (L~ ~) --  Lm) A~ b. (8)  
i ~ l  

Comparing (5) and (8), we find that 

n--1 \ --1 

(9) 

It follows from (9) that the strain-concentration tensor for an inclusion of the i-th fraction 
can be represented in the form of the convolution of two tensors. One of these tensors char- 
acterizes the strain field of a single inclusion in an infinite matrix, while the other ten- 
sor characterizes the distortion of this field due to the presence of other inclusions. 

If we take into account the relation obtained in [7], 

A(~>L o) B(~)L ~ ~ = ~ , ,  ( l O )  
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where Bs(i) is the stress concentration tensor for an inclusion in a composite. With allow- 
ance for (6) and (i0), the value of this quantity will be 

= us lJs ] , 
i=l 

i.e., the structures of the tensors Bs(i) and As(i) coincide. 

We find expressions for the compressive bulk modulus K, and shear modulus G, of the com- 
posite from (6) by separating the tensors in this expression into volumetric and deviatoric 
components: 

~=i ~iPd-i ' ~iP+i ' 

n - - 1  n - - 1  

i=i ~iipi hi- i ' 

3Kin 2p -~- 3 K~ i) G~ i) 
P = ~ ;  Pi - -  39 -v' 2; ~i ~- --'Kin, ~ii~ - -  Gi  n ; 

(ii) 

(12) 

where K m and G m are the compressive bulk modulus and shear modulus of the matrix; Ks (i) , 

Gs(i) are the corresponding elastic moduli of the i-th fraction. 

If the filler consists of hollow glass microspheres, then in (12) we should take [8] 

> = . 

+ o o ( 1 _ 9 ( o ) '  ' ~  = 2 ( 1 §  ~ 

where K c is the bulk modulus of elasticity of the material of the microspheres; 9(i) = ps(i)/ 
Pc; Pc is the density of the material of the microspheres; P0 = (i + Vc)/(2(l - 2Vc)); v c is 
the Poisson's ratio of the glass; v s is the corrected transverse-strain coefficient of a hol- 
low sphere. For thin spherical shells, its approximate value v s = (3 + 5Vc)/(ll + 5Vc). The 
exact value of v s for a hollow sphere of arbitrary thickness was also given in [8]. 

The results calculated for the effective moduli of a composite containing spherical in- 
clusions of different diameters and densities can be refined further on the basis of a model 
which accounts for the geometry of the arrangement of the filler in the matrix. 

The model presented below follows from the features of the process of making high-filler- 
content polymer composites by the impregnation method [9]. 

Let us assume that a filler consisting of spherical inclusions of different diameters 
and densities given by known vector-functions d and p is densely arranged in space, as shown 
in Fig. la. With the introduction of the matrix material in the interstices between the in- 
clusions, the inclusions move apart from one another. This leaves the structure depicted in 
Fig. lb. 

We will surround each inclusion by a spherical layer of matrix in such a way that the 
newly formed two-layer composite cells will have the distribution of external diameters 
d (~) = d (*) ( d ~ ) ,  d (*~ , 2 ..... dn-l). Thls distribution is similar to d, so that di/di(*) = I, where 1 
is the similarity parameter. This parameter is yet to be determined. 

By virtue of having assumed the existence of similitude between d and d(*) , we find 
that the coefficient describing the packing of the composite spherical cells D will be equal 
to the coefficient describing the packing of the filler in the consolidated state. Its value, 
dependent on d and p, can be found from experimental studies [I0, ii] or can be approximately 
calculated for multiphase mixtures [12]. 

We now need to construct a vector function describing the distribution of the composite 
cells with regard to their volume content in the mixture 
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Fig. 1 

V {U (1) (2) ., V --I)}, (n h 
Vc = O k  C ~ UC ~ �9 

n--1 

Z ,~{) = D. ( 1 3 )  
i= l  

The components of the vectors vc and p are connected by the relation 

v~)= p{v~/~ ~. 

Insertion of (14) into (13) leads us to the value of the similarity parameter 

(14) 

%=~vJD. (15) 

It should be pointed out that the expression for I, valid for regular packings of spheres of 
one size, retains the same form in the present model for a random packing of spherical parti- 
cles with arbitrary diameters. It remains to be proven that the densities of the composite 
and the model are the same for the resulting value of ~. 

The density of a multiphase matrix composite 

P, ~ (/)- ({) = p~ v~ + pmVm, (16) 
/=1 

where Pm is the density of the matrix. The density of the model 

n--I 

Pmod= ~ (O ({) (I D) i=z Po vo +Pm -- (17) 

[p0(i) = ps(i)l 3 + Pm(l - 13 ) is the apparent density of the composite cell]. Inserting 

p0(i) into (17) and performing some simple transformations, we arrive at expression (16) for 
the density of the composite. 

The effective moduli of the matrix mixture representing the second model are calculated 
in the following sequence. First we find the corrected elastic characteristics of the compo- 
site spherical cells. This can be done using the concentrically spherical model in [4]. 

As a result, the original n-phase composite is replaced by another n-phase composite 
with a volume content of composite cells D and a volume content of matrix 1 - D. It is con- 
venient to make use of the self-consistent method [13] to calculate the initial moduli of 
such a composite. The validity of taking this approach for a two-phase matrix mixture was 
proven in [14]. 

With allowance for (5) and the results in [13], we find the final expressions for the 
effective moduli of an n-phase matrix mixture by combining the self-consistent method with 
the concentrically spherical model in the form 

n--1 

D y, ~ -({) r~(*) _ i)  
~, = i + ~:~ n--I 7 

cz ( i)  I--D+D vi *(0 
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n--1 

i ,(d) 
G, = I + ~=1 ( 1 8 )  

I - - D ~ - D  ~ - a  (0 ~ i  *(d) 

= + (.)%, - 

= 4 - ~ , '  T 1 = 3 ~ + 2 '  ~ 0 ,  a r e  t h e  e l a s t i c  b u l k  m o d u l u s  and  s h e a r  m o d u l u s  o f  a c o m p o s i t e  

spherical cell of the i-th fraction of the filler; 

= 1 +  
K~ (1 - P)  (~i - t) p + t + o 

- - = l +  
G m (1 -- ~a) (~1i-- t) 0 1 +  t+o2" 

The sought values K, and G, are readily determined from a system of nonlinear algebraic equa- 
tions by the method of successive approximation. 

In conclusion, we will examine two examples of the use of the solutions obtained above. 

i. Let us find the shear modulus of a mixture of rigid spherical inclusions in an in- 
compressible matrix containing pores. One feature of this system is the indeterminateness 
of both the upper and lower bounds of the Hill and Hashin-Shtrikman forks. The composition 
of the filler: relative volume of inclusions Pl = 0.7; relative volume of pores P2 = 0.3. 
The ratio of the diameter of the inclusions to the diameter of the pores is equal to 7. In 
accordance with [ii], the packing coefficient D = 0.8 for such a filler. 

In the case where no allowance is made for the geometry of the packing in accordance 
with (ii) 

G, v m + (5/2) plus 

G m v~n + (513) p2v~ " ( 1 9 )  

The results of the calculation are shown in Fig. 2. Curve 1 was plotted from Eq. (19), 
while curve was plotted from Eqs. (18). It can be seen that allowing for the arrangement of 
the inclusions in the matrix is mandatory for high-filler-content mixtures characterized by 
large fluctuations in the elastic moduli of the components. 

2. Let us calculate the effective moduli of a polymer composite having the following 
initial data. Matrix) epoxy binder; K m = 5.12.103 MPa, v m = 0.37. Filler) hollow glass 
microspheres having a composition characterized by the following distributions: p = 0.015; 
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0.060; 0.176; 0.178; 0.251; 0.276; 0.046, Ps = 0.44; 0.35; 0.24; 0.19; 0.18; 0.18; 0.16 (g/ 
cm3), d = 15, 25, 33, 40, 48, 58, 68 (Bm), K c = 4.2"103 MPa, v c = 0.21, D = 0.72, Pm = 1.2 
g/cm3, Pc = 2.4 g/cm 3. 

Figure 3 shows the compressive bulk moduli K,, shear moduli G,, and longitudinal elastic 
moduli E, of the composite. 
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